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Physical Theory of the Electric Wave-Filter

By GEORGE A. CAMPBELL

Note : The electric wave-filter, an invention of Dr. Campbell, is one of the

most important of present day circuit developments, being indispensable

in many branches of electrical communication. It makes possible the

separation of a broad band of frequencies into narrow bands in any desired

manner, and as will be gathered from the present article, it effects the

separation much more sharply than do tuned circuits. As the communica-

tion art develops, the need will arise to transmit a growing number of tele-

phone and telegraph messages on a given pair of line wires and a grow-

ing number of radio messages through the ether, and the filter will prove

increasingly useful in coping with this situation. The filter stands beside

the vacuum tube as one of the two devices making carrier telegraphy and

telephony practicable, being used in standard carrier equipment to separate

the various carrier frequencies. It is a part of every telephone repeater

set, cutting out and preventing the amplification of extreme line frequencies

for which the line is not accurately balanced by its balancing network.

It is being applied to certain types of composited lines for the separation

of the d.c. .Morse channels from the telephone channel. It is finding many
applications to radio of which multiplex radio is an illustration. The filter

is also being put to numerous uses in the research laboratory.

The present paper is the first of a series on the electric wave-filter to

be contributed to the Technical Journal by various authors. Being an

introductory paper the author has chosen to discuss his subject from a

physical rather than mathematical point of view, the fundamental char-

acteristics of niters being deduced by purely physical reasoning and the

derivation of formulas being left to a mathematical appendix.

—

Editor.

THE purpose of this paper is to present an elementary, physical

explanation of the wave-filter as a device for separating sin-

usoidal electrical currents of different frequencies. The discussion
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will be general, and will not involve assumptions as to the detailed

construction of the wave-filter; but in order to secure a certain nu-

merical concreteness, curves for some simple wave-filters will be in-

cluded. The formulas employed in calculating these curves are

special cases of the general formulas for the wave-filters which are,

in conclusion, deduced by the method employed in the physical

theory.

All the physical facts which are to be presented in this paper,

together with many others, are implicitly contained in the compact

formulas of the appendix. Although only comparatively few words

of explanation are required to derive these formulas, they will not be

presented at the start, since the path of least resistance is to rely

implicitly upon formulas for results, and ignore the troublesome ques-

tion as to the physical explanation of the wave-filter. In order to

examine directly the nature of the wave-filter in itself, as a physical

structure, we proceed as though these formulas did not exist.

It is intended that the present paper shall serve as an introduction

to important papers by others in which such subjects as transients on

wave-filters, specialized types of wave-filters, and the practical design

of the most efficient types of wave-filters will be discussed. 1

Definition of Wave-Filter

A wave-filter is a device for separating waves characterized by a dif-

ference in frequency. Thus, the wave-filter differentiates between

certain states of motion and not between certain kinds of matter,

as does the ordinary filter. One form of wave-filter which is well

known is the color screen which passes only certain bands of light

frequencies; diffraction gratings and Lippmann color photographs

also filter light. Wave-filters might be constructed and employed

for separating air waves, water waves, or waves in solids. This

paper will consider only the filtering of electric waves; the same

principles apply in every case, however.

In its usual form the electric wave-filter transmits currents of all

frequencies lying within one or more specified ranges, and excludes

currents of all other frequencies, but does not absorb the energy of

these excluded frequencies. Hence, a combination of two or more

wave-filters may be employed where it is desired to separate a broad

band of frequencies, so that each of several receiving devices is sup-

1 I take pleasure in acknowledging my indebtedness to Mr. O. J. Zobel for specific

suggestions, and for the light thrown on the whole subject of wave-filters by his

introduction of substitutions which change the propagation constant without chang-
ing the iterative impedance.
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plied with its assigned narrower range of frequencies. Thus, for

instance, with three wave-filters the band of frequencies necessary

for ordinary telephony might be transmitted to one receiving device,

all lower frequencies transmitted to a second device, and all higher

frequencies transmitted to a third device—separation being made

without serious loss of energy in any one of the three bands.

By means of wave-filters interference between different circuits or

channels of communication in telephony and telegraphy, both wire and

radio, can be reduced provided they operate at different frequencies.

The method is furthermore applicable, at least theoretically, to the

reduction of interference between power and communication circuits.

The same is true of the simultaneous use of the ether, the earth return,

and of expensive pieces of apparatus employed for several power or

communication purposes. In all cases the principle involved is the

same as that of confining the transmission in each circuit or channel

to those frequencies which serve a useful purpose therein and exclud-

ing or suppressing the transmission of all other frequencies. In the

future, as the utility of electrical applications becomes more widely

and completely appreciated, there will be an imperative necessity

for more and more completely superposing the varied applications of

electricity; it will then be necessary, to avoid interference, to make

the utmost use of every method of separating frequencies including

balancing, tuning, and the use of wave-filters.

Definition of Artificial Line

The wave-filter problem in this paper is discussed as a phase of

the artificial line problem, and it is desirable to start with a some-

what generalized definition of the artificial line. The definition

will, however, not include all wave-filters or all artificial lines, since

a perfectly general definition is not called for here. Even if an ar-

tificial line is to be, under certain wave conditions, an imitation of,

or a substitute for, an actual line connecting distant points, hardly

any limitation is thereby imposed upon the structure of the device;

an actual line need not be uniform but may vary abruptly or gradually

along its length and may include two, three, four or more transmis-

sion conductors of which one may be the earth. Having indicated

that wave-filters partake of somewhat this same generality of struc-

ture, the present paper is restricted to wave-filters coming under

the somewhat generalized artificial line specified by the following

definition:

An artificial line is a chain of networks connected together in sequence

through two pairs of terminals, the networks being identical but other-
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wise unrestricted. This generalized artificial line possesses the well-

known sectional artificial line structure but it need not be an imita-

tion of, or a substitute for, any known, real, transmission line con-

necting together distant points. The general artificial line is shown

by Fig. 1 where N, N, ....are the identical unrestricted networks

which may contain resistance, self-inductance, mutual inductance,

and capacity.

In discussing this type of structure as a wave-filter, the point of

view of an artificial line is adopted for the reason that it is advan-

tageous to regard the distribution of alternating currents as being

dependent upon both propagation and terminal conditions, which

are to be separately considered. In this way the attenuation, or

Fig. 1—Generalized Artificial Line as Considered in the Present Paper, where

N, N, . . . are Identical Arbitrary Electrical Networks

falling off, of the current from section to section may be most directly

studied. Terminal effects are not to be ignored, but are allowed

for, after the desired attenuation effects have been secured, possibly

by an increase in the number of sections to be employed.

The fundamental property of this generalized artificial line, which

includes uniform lines as a special case, is the mode in which the

wave motion changes from one section to the next, and may be stated

as follows:

Wave Propagation' Theorem

Upon an infinite artificial line a steady forced sinusoidal disturbance

falls off exponentially jrow one section to the next, while the phase changes

by a constant amount. Reversing the direction of propagation does

not alter either the attenuation or phase change. When complex quan-

tities are employed the exponential includes the phase changer This

theorem is proved, without mathematical equations, by observing

2 This theorem is not new, but it is ordinarily derived by means of differential or

difference equations whereas it may be derived from the most elementary general

considerations, thus avoiding all necessity of using differential or difference equa-

tions, as illustrated in my paper "On Loaded Lines in Telephonic Transmission'

(Phil. Mag., vol. 5, pp. 313-331, 1903). In that discussion, as well as in this present

one it is tacitly assumed that the line is either an actual line with resistance, or the

limit of such a line as the resistance vanishes, so that the amplitude of the wave

never increases towards the far end of an infinite line.
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that the percentage reduction in amplitude and the change in phase,

in passing from the end of one section to the corresponding point of

the next section, do not depend upon either the absolute amplitude

or phase; they depend, instead, only upon the magnitudes, angles

and interconnections of the impedances between the two points and

of the impedances beyond the second point. These impedances

are, since the line is assumed to be periodic and infinite, identically

the same for corresponding points between all sections of the line,

and, therefore, the relative changes in the wave will be identical at

corresponding points in all sections. This proves the exponential

falling off of the disturbance and the constancy of phase change; the

ordinary reciprocal property shows that the wave will fall off identic-

ally whichever be the direction of propagation. By the superposition

property it follows that the steady state on any finite portion of a

periodic recurrent structure must be the sum of two equally attenuated

disturbances, one propagated in each direction.

The fundamental wave propagation theorem may be generalized

for any periodic recurrent structure irrespective of the number and

kind of connections between periodic sections, provided the dis-

turbance is such as to remain similar to itself at corresponding points

of each of these connections.

Equivalent Generalized Artificial Line

Since, at a given frequency, any network employed solely to con-

nect a pair of input terminals with a pair of output terminals may be

replaced by cither three star-connected impedances or three delta-

connected impedances, the general artificial line of Fig. I may be

2 4 6 8

Fig. 2—Equivalent Artificial Line Obtained by Substituting Star Impedances

2 4-6
Fig. 3—Equivalent Artificial Line Obtained by Substituting Delta Impedances
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4 6

Fig. 4—Equivalent Ladder Artificial Line

replaced by the equivalent artificial line of either Fig. 2 or Fig. 3.

By combining the series impedances in Fig. 2 and the parallel im-

pedances in Fig. 3, the equivalent line in Fig. 4 is obtainable. The
two ways of arriving at Fig. 4 give different values for the series and

shunt impedances Zi, Z2 , and different terminations for the line, but

the propagation of the wave is the same in both cases, since the assumed

substitutions are rigorously exact. While Fig. 4 may be considered

as the generalized artificial line equivalent to Fig. 1, this requires

including in Z x and Z« impedances which cannot always be physically

realized by means of two entirely independent networks, one of

which gives Z\ and the other Z«. This restriction is of no importance

when we are discussing the behavior of the generalized artificial line

at a single frequency; accordingly, the ladder artificial line is suitable

for this part of the discussion. When we come to the more specific

correlation of the behavior of the generalized artificial line at different

frequencies, it will be found more convenient to replace the ladder

artificial line by the lattice artificial line, which avoids the necessity

of considering any impedances which are not individually physically

realizable.

The equivalence between Figs. 1 and 4 is implicitly based upon

the assumption that it is immaterial, for artificial line uses, what

absolute potentials the terminals 1, 2; 3, 4; 5, 6; etc. have—this leaves

us at liberty to connect 2, 4, 6, etc., together, so long as we main-

tain unchanged the differences in potential between 1 and 2, 3 and 4,

etc. Instead of connecting 2 and 4 we might equally well connect

2 and 3, and then Z\ would connect 1 and 4 as in Fig. 5; with these

4 6

Fig. 5—Equivalent Artificial Line with Crossed Impedances
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cross-connections the propagation still remains unchanged. We have

again obtained Fig. 4 with no circuit difference except the inter-

change of terminals 3 and 7 with terminals 4 and 8 ; or, if this is ignored,

a reversal in the sign of the current at alternate pairs of terminals.

This shows that the reversal of the current in alternate sections of

Fig. 4 may not be of primary significance, since networks which are

essentially equivalent have reversed currents.

In order to deal, at the start, with only the simpler terminal con-

ditions, we may consider the line to begin with only one-half of the

series impedance Z u or only one-half of the bridged admittance

1/Z2 . These mid-points are called the mid-series and mid-shunt

points; knowing the results of termination at either of these points,

the effect of termination at any other point may be readily deter-

mined. For Fig. 4 termination at mid-shunt has been chosen so

that each section of the line adds a complete symmetrical mesh to

the network.

An alternator, introducing an impedance Za , is shown as the source

of the steady-state sinusoidal current in Fig. 4. Assume that the

impedance Z„ is variable at pleasure, and that it is gradually adjusted

to make the total impedance in the generator circuit vanish,—in this

case no e.m.f. will be required to maintain the forced steady-state

which becomes a free oscillation. If, in addition, it is assumed that

the line has an infinite number of sections, this required value of Za

will be the negative of the mid-shunt iterative impedance3 of the ar-

tificial line, which will be designated as K 2 . The first shunt on the

line now includes -K<> in parallel with 2Z2 so that its total impedance

is, say, Z' = -2Z->K2/(2Z2-Ko). The infinite line with its first

shunt given the special value Z' is thus capable of free oscillation.

It is possible to simplify this infinite oscillating circuit by cutting

off any part of it which has the same free period as the whole circuit.

The entire infinite line beyond the second shunt 3, 4 certainly has

this same free period, provided its first shunt also has the impedance

Z 1

. Conceive the shunt Z2 at 3. 4 as replaced by the four impedances

2Z2 , 2Z2 , + Kn and -A'2 all in parallel; the first and last, which

together make the Z' required by the infinite line, leave 2Z2 and

3 The "iterative impedance" of an artificial line is the impedance whicji repeats

itself when one or more sections of the artificial line are inserted between this im-

pedance and the point of measurement. It is thus the impedance of an infinite

length of any actual artificial line, regardless of the termination of the remote end

of the line. In general, its value is different for the two directions of propagation,

but not when the line is symmetrical, as at mid-series and mid-shunt. The values

at these points are denoted by A'i and A'2 . "Iterative impedance" is employed

because it is a convenient term which is distinctive and describes the most essential

property of this impedance; it seems to be more appropriate than "characteristic

impedance," "surge impedance" and the other synonyms in use.
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+K 2 in parallel, which have the impedance Z" = +2Z2K2/(2Z.,+K2).

Removing Z' together with the infinite line on the right there remains

on the left a closed circuit made up of the three impedances Z\, Z'

and Z" in series.

After the division, the infinite line on the right will continue, with-

out modification, to oscillate freely, since it is an exact duplicate of

the original oscillating line, and so must maintain the free oscillation

already started. Since it oscillates freely by itself, it had originally

no reaction upon the simple circuit from which it was separated

;

this simple circuit on the left must thus also continue its own free

oscillations without change in period or phase.

We might continue and subdivide the entire infinite line into

identical simple circuits but it is sufficient to consider this one detached

circuit, which is shown separately in two ways by Fig. 6, since from

Z, Ve
r

-WMAr

-K.

Fig. 6—Equivalent Section of Fig. 4 Terminated for Free Oscillation

its free oscillations the mathematical formulas for the steady-state

propagation in the artificial line may be derived. This is deferred,

however, until after the physical discussion is completed, so as to

leave no room for doubt that the essentials of the physical theory

are really deduced without the aid of mathematical formulas.

The generalized artificial line, if made up entirely of pure resist-

ances, will attenuate all frequencies alike, and the entire wave will

be in the same phase; this remains true, whatever be the impedance

of the individual branch of the network, provided the ratio of the

impedances of all branches is a constant independent of the frequency.

This is precisely the condition to be avoided in a wave-filter; branches

must not be similar but dissimilar as regards the variation of impedance

with frequency. This calls for inductance and capacity with neg-

ligible resistance, so that there is an opportunity for the positive

reactance of one branch to react upon the negative reactance of

another branch, in different proportions at different frequencies.

Assuming the unit network N of Fig. 1 to be made up of a finite

number of pure reactances, the equivalent impedances Z\ and Z« of

Figs. 4 and 5 must also be pure reactances. Under this assumption
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let us consider the free oscillations of Fig. 6; first, with K2 assumed

to be a pure reactance; second, with K* assumed to be a pure resist-

ance; and third, in order to show that this third assumption is con-

trary to fact, with K2 assumed to be an impedance with both resist-

ance and reactance.

With K-> a reactance, the circuit contains nothing but reactances,

and free oscillations are possible if, and only if, the total impedance

of the circuit is zero. The end impedances Z' and Z" being different,

the potentials at the ends of the mesh will be different, and this means

that the corresponding wave on the infinite line will be attenuated,

since the ratio between these potentials is the rate at which the am-

plitudes fall off per section.

With K» a pure resistance, a free oscillation is possible only if the

dissipation in the positive resistance at the right end of the circuit

is exactly made up by the hypothetical source of energy existing in

the negative resistance — K* at the left end of the circuit. An exact

balance between the energy supplied at One end and that lost at the

other end is possible, since the equal positive and negative resistances

K2, —K-2 carry equal currents. This continuous transfer of energy

from the left of the oscillating circuit of Fig. 6 to the right end is the

action which goes on in every section of the infinite artificial line, and

serves to pass forward the energy along the infinite line.

If /Co were complex, —K2 on the left of Fig. 6 and +K2 on the

right would not carry the same fraction of the circulating current J,

since they are each shunted by a reactance 2Z2 which would allow

less of the current to flow through +if2 than through —K 2 ,
if 2Z2

makes the smaller angle with +K», and vice versa. No balance

between absorbed and dissipated energy is possible under these con-

ditions when the equal and opposite resistance components carry

unequal currents. A complex A'2 , therefore, gives no free oscilla-

tion, and cannot occur with a resistanceless artificial line.

It is perhaps more instructive to consider the transmission on the

line as a whole, rather than to confine attention exclusively to the

oscillations of the simple circuit of Fig. 6 and so, at this point, with-

out following further the conclusions to be drawn directly from this

oscillating circuit, the fundamental energy theorem of resistanceless

artificial lines will be stated, and then proved as a property of an

infinite artificial line.

Energy Flow Theorem

Upon an infinite line of periodic recurrent structure, and devoid of

resistance, a sinusoidal e.m.f. produces one of two steady states, viz.:



10 BELL SYSTEM TECHNICAL JOURNAL

1. A to-and-fro surging of energy without any resultant transfer

of energy; currents and potential differences each attenuated from

section to section, but everywhere in the same or opposite phase and

mutually in quadrature, or,

2. A continuous, non-attenuated flow of energy along the line

to infinity with no energy surging between symmetrical sections;

current and potential non-attenuated, but retarded or advanced in

phase from section to section, and mutually in phase at mid-shunt

and mid-series points.

The critical frequencies separating the two states of motion are the

totality of the resonant frequencies of the series impedance, the anti-

resonant frequencies of the shunt impedance, and the resonant frequencies

of a single mid-shunt section of the line.

To prove the several statements of this theorem let us consider

first the consequences of assuming that the wave motion, in progress-

ing along the line, is attenuated, and next the consequences of assum-

ing that the wave motion changes its phase. If the wave is atten-

uated, however little, at a sufficient distance it becomes negligible,

and the more remote portions of the line may be completely removed

without appreciable effect upon the disturbance in the nearer portion

of the line. That part of the line which then remains is a finite net-

work of pure reactances, and in any such network all currents are

always in the same, or opposite, phase; so, also, are the potential

differences; moreover, the two are mutually in quadrature; there is

no continuous accumulation of energy anywhere, but only an ex-

change of energy back and forth between the inductances, the ca-

pacities and the generator. Continuously varying the amount of

the assumed attenuation will cause a continuous variation in the

corresponding frequency. The motion of the assumed character

may, therefore, be expected to occur throughout continuous ranges

or bands of frequencies and not merely at isolated frequencies.

The question may be asked—How far does the energy surge? Is

the surge localized in the individual section, or does the surge carry

the energy back and forth over more than one section, or even in and

out of the line as a whole? To answer this question, it would be

necessary, as we will now proceed to prove, to know something about

the actual construction of the individual section. If each section is

actually made up as shown in Fig. 6, and this is entirely possible in

the present case (since only positive and negative reactances would

be called for) , then the section is capable of free oscillation, as explained
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above, and the surging is localized within the section; twice during

each cycle the amount of energy increases on the right and decreases

on the left. But we do not know that the section is made up like

Fig. 6; we only know that it is equivalent to Fig. 6 as regards input

and output relations. As far as these external relations go, the actual

network may be made exclusively of either inductances or capacities

with the connections shown in Fig. 4 or with the cross-connections

of Fig. 5, according as the current is to have the same or opposite

signs in consecutive sections. In any network made up exclusively

of inductances or of capacities, the total energy falls to zero when

the current or the potential falls to zero, respectively. Twice, there-

fore, in every cycle the total energy surges into this line and then it

all returns to the generator. With other networks, surgings inter-

mediate between these two extremes will occur. The theorem,

therefore, does not limit the extent of the surging.

Under the second assumption, the phase difference between the

currents at two given points, separated by a periodic interval, is to

be an angle which is neither zero nor a multiple of =fc 7r. The assumed

difference in phase can only be due to the infinite extension of the

artificial line since, as previously noted, no finite sequence of induct-

ances and capacities can produce any difference in phase. That

infinite lines do produce phase differences is well-known; in particular,

an infinite, uniform, perfectly conducting, metallic pair shows a

continuous retardation in phase. If the infinitely remote sections

of the artificial line are to have this controlling effect on the wave

motion, the wave motion must actually extend to infinity, that is,

there can be no attenuation. The wave progressing indefinitely to

infinity without attenuation must be supplied continuously with

energy; this energy must flow along the entire line with neither loss

nor gain in the reactances it encounters on the way. This continuous

flow of energy can take place only provided the currents and poten-

tials are not in quadrature; they may be in phase. In considering

the free oscillations of Fig. 6 it was shown that Ko is real if it is not

pure reactance. That is, for the mid-shunt section the current and

potential are in phase. It is easy to show that they are also in phase

at the mid-series point which is also a point of symmetry.

This flow-of-energy state of motion thus necessarily characterizes

a phase-retarded wave on a resistanceless artificial line, regardless

of the amount of the assumed positive or negative retardation, which

may be taken to have any value between zero and exact opposition

of phase. Continuously varying the retardation throughout the 180

degrees will, in general, call for a continuous change in the frequency
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of the wave motion. The second state of motion occurs, therefore,

throughout continuous ranges or bands of frequencies.

No other state of motion is possible. With given initial amplitude

and phase any possible wave motion is completely defined by its

attenuation and phase change. All possible combinations of these

two elements have been included in the two states, since the excluded

conditions on each assumption have been included as a consequence

of the other assumption. Thus, the exclusion of no attenuation in

the first assumption was found necessarily to accompany the phase

change of the second assumption; currents in phase or opposed,

which were excluded from the second assumption, were found to be

necessary features accompanying the first assumption. There remains

only to consider the critical frequencies separating the two states of

motion. At these frequencies there can be no attenuation and lag

angles of multiples of ±x, including zero, only. At symmetrical

points the iterative impedance of the line must be a pure reactance

to satisfy the first state of motion, and a pure resistance to satisfy

the second state of motion. The only iterative impedances which

satisfy these conditions are zero and infinity.

- Some details relating to the pass and stop bands and the criti-

cal frequencies are brought together in the following table, where
" stop (=•=)" refers to stop bands, the current being in phase or op-

posed in successive sections, and where 7 and k refer to the line obtained

by uniformly distributing 1 /Z2 with respect to Z\.

TABLE I.

For Ladder Artificial Line, Fig. 4

Band Critical

Frequency

Ratio
z,

4Z 2

Uniform
Line

Artificial Line

7 k r
-r

e /v, K,

Stop ( + ) >o +real imag. -(-real 0<<1 imag. imag.

Z, =
Z- = 00 CO

1

1 CO CO

Pass '

) > > -

1

iniag. + rcal imag. c
i0 + real -freal

Z, + 4Z S = t -1 (2 i'2Zj i ir -1

-1<<(

00

Stop (-) <-l iniag. freal i-w + rea! imag. imag.

Z\ = 00

z, = u

— 00

— CO

CO

CO

CO CO

CO

CO

4*
2Z,
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It is not necessary to check the table item by item, many of which

have already been proven, but it will be instructive to check some of

the items by assuming that Zi/4Z2 , called the ratio for brevity, is

positive to begin with, and that a continuous increase in frequency

reduces the ratio to zero and back through =f a> to its original posi-

tive value. This cycle starts with a stop (+) band since the artificial

line is in effect a network of reactances, all of which have the same

sign; there is attenuation and the iterative impedances are imaginary.

When the ratio decreases to zero, there must be either resonance

which makes Z x
= 0, or anti-resonance which makes Z2 = oo

; in

either case the artificial line has degenerated into a much simpler cir-

cuit; it is a shunt made up of all Z 2 's combined in parallel, or a simple

series circuit made up of all Zi's, respectively; the iterative imped-

ances are and o°
, respectively; there is no attenuation in either case.

With a somewhat further increase of the frequency the ratio will

assume a small negative value with the result that the artificial line

will have both kinetic and potential energy. An analogy now exists

between the artificial line and an ordinary uniform transmission line,

which possesses both kinetic and potential energy, and is ordinarily

visualized as being equivalent to many small positive reactances, in

series, bridged, to the return conductor, by large negative reactances.

The fact that uniform lines do freely transmit waves is a well-known

physical principle, and it is not necessary to repeat here the physical

theory of such transmission merely to show that the same phenomenon

occurs with the identical structure when it is called an artificial line

or wave-filter.

In order to determine just how far the ratio may depart from zero,

on the negative side, without losing the property of free transmission,

we look for any change in the action of the individual section of the

artificial line which is fundamental; nothing less than a fundamental

change in the behavior of the individual section can produce such a

radical change in the line as an abrupt transition from the free trans-

mission of a pass band to the to-and-fro surging of energy in a stop

band. Now as the ratio is made more and more negative by the

assumed increase of frequency, the value —1 is reached, at which

frequency the symmetrical section (Fig. 6) of the artificial line is

capable of free oscillation by itself. This is well recognized as a

most fundamental change in the properties of any network, and it

affords grounds for expecting a complete change in the character of

the propagation over the artificial line. The change must be to a

stop band with currents in opposite phase, since at resonance the

potentials at the two ends of a section are in opposite phase.
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Further increase in the frequency cannot make any change in the

absolute difference in phase between the two ends of the other section,

since opposition is the greatest possible difference in phase; the wave
now adapts itself to increasing frequency by altering its attenuation.

Upon continuing the increase of frequency, so as to reduce the

ratio to — oo
, we arrive at either anti-resonance corresponding to

Z\ — oo or resonance corresponding to Z2 = ; the artificial line has

now degenerated into a row of isolated impedances Z2 , or into a series

of impedances Z\ short-circuited to the return wire; in either case

the attenuation is infinite since no wave is transmitted. Passing

beyond this critical frequency the ratio becomes positive, according

to our assumption, and we are again in a stop (+) band.

While in this rapid survey of what happens during this frequency

cycle little has been actually proven, it should have been made
physically clear why abrupt changes in the character of the trans-

mission occur at the frequencies making the ratio equal to 0, —1 or

oo
, since the line degenerates into a simpler structure, or the phase

change reaches its absolute maximum, on account of resonance, at

these particular frequencies.
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Information as to the location of the bands is often obtained most

readily by plotting both Z x and -4Z2 , as illustrated in Fig. 7, and

determining the critical frequencies by noting where the curves cross

each other and the abscissa axis, as well as where they become in-

finite. Any particular band is then a pass band, a stop (+) band

or a stop ( — ) band, according as Zu the abscissa axis, or — 4Z 2 lies

between the other two of the three lines. In Fig. 7 the pass bands

are Pu Pi, Pa, Pa\ the stop (+ ) bands are 52 ,
Sit S6 ; and the stop

(-) bands are Su S3 , S6 , S-, and they illustrate quite a variety of

sequences. By altering the curves the bands may be shifted, may

be made to coalesce, or may be made to vanish.

Wave-Filter Curves

The pass band and stop band characteristics of wave-filters are

concretely illustrated for a few typical cases by the curves of Figs.

8-13, which show the attenuation constant A, the phase constant B,

and both the resistance R and reactance X components of the itera-

tive impedance for a range of frequencies which include all of the

critical frequencies, except infinity. The heavy curves apply to the

ideal resistanceless case, while the dotted curves assume a power

factor equal to l/(20ir) for each inductance which is a value readily

obtained in practice. This value is, however, not sufficiently large to

make these small scale curves entirely clear, since considerable por-

tions of the dotted curves appear to be coincident with the heavy line

curves; but this, as far as it goes, proves the value of the present dis-

cussion which rests upon a close approximation of actual wave-filters

to the ideal resistanceless case.

The low pass resistanceless wave-filter, as shown by Fig. 8, pre-

sents no attenuation below 1,000 cycles; above this frequency the

attenuation constant increases rapidly, in fact, the full line attenuation

curve increases at the start with maximum rapidity, since it is there

at right angles to the axis. The dotted attenuation curve, which in-

cludes the effective resistance in the inductance coils, follows the

ideal attenuation curve closely, except in the neighborhood of 1,000

cycles, where resistance rounds off the abrupt corner which is present

in the ideal A curve. The phase constant B is, at the start, propor-

tional to the frequency, as for an ordinary uniform transmission line;

its slope becomes steeper as the critical frequency 1,000 is approached

where the curve reaches the ordinate t, at which value it remains

constant for all higher frequencies. As shown by the dotted B
curve, resistance rounds off the corner at the critical frequency, but
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otherwise leaves the curve approximately unchanged. The full line

curves for Pi and Xi show that in the ideal case the iterative im-

pedance is pure resistance and pure reactance in the pass and stop

bands respectively, and that resistance smooths the abrupt transition

at the critical frequency.

The high pass wave-filter shown by Fig. 9 passes the band which

is stopped by the low pass wave-filter of Fig. 8, and vice versa. For

this reason the two wave-filters are said to be complementary.

Another set of two complementary wave-filters is shown by Figs.

10 and 11, one of which passes only a single band of frequencies,

not extending to either zero or infinity, while the other passes the

remaining frequencies only. The single pass band of Fig. 10, em-

bracing a total phase change 2ir on the B curve, is actually a case of

confluent pass bands, each of which embraces the normal angle t.

The tendency of the two simple pass bands to separate, and leave a

stop band between them, is shown by the hump in the dotted at-

tenuation constant curve at 1,000 cycles. If, instead of the two

simple bands having been brought together, one of them had been

relegated to zero or infinity, the single remaining pass band would

have exhibited the normal angular range ir in the B curve, and there

would have been no hump in the dotted A curve. The stop band of

Fig. 11 also illustrates peculiarities which are not necessary features

of a wave-filter with a single stop band in this position. This wave-

filter is obtained from Fig. 7 by making all bands vanish except

P2. S3, Sa and P3 ,—by extending P2 to zero, P3 to infinity, and making

S3 and Sh coalesce, so that the attenuation becomes infinite in the

stop band without passing from a stop ( — ) to a stop (+ ) band.

The coalescing stop bands are responsible for the rapid changes in

the B, i?i, and Xi curves of Fig. 11 which would not have appeared

if, in Fig. 7, the same pass band had been obtained by retaining Pi,

S2 and Po and making all other bands vanish.

An extreme case of complementary wave-filters is shown by Figs.

12 and 13, where no frequencies and all frequencies are passed re-

spectively. The first result is obtained by combining inductances

alone, which, as has been pointed out above, can give only an at-

tenuated disturbance devoid of wave characteristics. The wave-

filter shown for passing all frequencies has inductance coils in the

line, and capacities diagonally bridged across the line. This wave-

filter combines a constant iterative impedance with a progressive

change in phase which is sometimes useful. 4 An outstanding char-

4 A theoretical use of the phase shifting afforded by the lattice artificial line was
made at page 253 of "Maximum Output Networks for Telephone Substation and
Repeater Circuits," Trans. A. 1. E. E., vol. 39, pp. 231-280, 1920.
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acteristic of this type of artificial line is that it has, for all frequencies,

the same iterative impedance as a uniform line with the same total

series and shunt impedances. This artificial line will be considered

in more detail in the next section of this paper.

Lattice Artificial Lines

Up to this point we have considered the properties of artificial line

networks which were supposed to be given. In practice the problem

is ordinarily reversed, and we ask the questions: May the locations

of the bands be arbitrarily assigned? May additional conditions be

imposed? How may the corresponding network be determined, and

what is its attenuation in terms of the assigned critical frequen-

cies? These questions might be answered by a study of Fig. 7, in

Fig. 14— Lattice Artificial Line

all its generality, but it seems simpler to base the discussion upon
the artificial line shown in Fig. 14, which is to be a generalization

of Fig. 13 to the extent of making the two impedances Z\ and Z*

any possible actual driving-point impedances. It is sometimes

illuminating to regard this artificial line as a nest of bridges, one

within another, as shown by Fig. 15.

On interchanging terminals 3 with 4 and 7 with 8 in Fig. 14 the

network of lines remains unchanged; thus, Z t and 4Z2 may be inter-

changed in the formulas for the artificial line with no change in the

result, except, possibly, one corresponding to a reversal of the current

at alternate junction points. Another elementary feature of this arti-

ficial line is that it degenerates into a simple shunt or a simple series

circuit at the resonant or anti-resonant frequencies, respectively, of

either Zi or Z2 , and these are the critical frequencies, terminating

the pass bands. At other frequencies, a positive ratio Zi/4Z2 must

give a stop band, since the reactances are all of one sign. If a small

negative value of this ratio gives free transmission, as we naturally

expect, there will be identical transmission, except for a reversal of
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\

2]

Fig. 15—Lattice Artificial Line Drawn to Show the Chain of Bridge Circuits

sign, when the ratio has the reciprocal value, which will be a large

negative quantity, since we may always interchange Zi and 4Z 2 .

The consequences of this and of other elementary properties of this

artificial line are brought together in the following table:

TABLE II

For Lattice Artificial Line, Fig. 14

Band
Critical

Frequency

Ratio
z,

4Z-.

Uniform
LlN'E

Artificial Line

7 k

imag.

CO

r
-r

e K

Stop ( +

)

1>>0

<()

2>>0 + real 0<<1

1

1

imag.

Z, =
Zi = 00 CO

Pass imag. + real

CO

imag.

imag. e
i6 4- real

Zi = CO

Z, =
CO

CO

<1

CO

CO

<2

i-r

itr

-1
-1

CO

Stop ( -

)

i-K + real -\<<o imag.

Z, = 4Z-. 1 2 IZi CO 2Z>

The cycle of bands: stop (+ ), pass, stop (-), adopted for the

table, carries the attenuation factor e~ T around the periphery of
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a unit semi-circle; in the stop (+ ) band it traverses the radius from

to 1, in the pass band it travels along the unit circle through 180

degrees to the value — 1, completing the cycle from —1 to in the

stop ( — ) band. In this cycle there are four points of special interest,

corresponding to ratio values 1,0, —1 and oo, for which the wave is

infinitely attenuated, unattenuated with an angular change of 0,

of 90, and of 180 degrees, respectively. It is at the 90 degree angle

that resonance of the individual section occurs; the iterative im-

pedance is then equal to 2|Z 2 |.

Graph of the Ratio Zi/4Zo for Fig. 14

If we plot Z\ and 4Z2 the pass bands are shown by the points where

the curves become zero or infinite, and the intersections of the two£,-[-
I ^^

^«f
ai_ 1 4.Z0- -,'

157 7 C lit *** r — 5^ 7
"If 1 "yr

2f
r3 ?** - *\ r4- /l\ -j 5 3

i [ y k _jf_

J i
/ i /

' / I i- -J

i I / V 3
i I \ 1

i i\i
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t X1 4 X-p L x± i _j .

500 Cycles 1000

Fig. 16—Graph for Locating the Pass and Stop Bands of the Lattice Artificial Line,

where Z./4Z, = T(a? - x*) (\l - xir i
(.\§ - .v

2)1 . . . , x = cycles/100, and the

resonant roots X\, x3, . . . are 0.650, 1, 2, 2.452, 4.442, 5, 6, 8.476 and the double

anti-resonant roots xt , xt, ... are 0.766, 2.301, 4.585, 7.423

curves show the frequencies at which the attenuation becomes in-

finite. These intersections must be at an acute angle since each

branch of the two curves has a positive slope throughout its entire

length ; for this reason it may be desirable to plot the ratio rather than

the individual curves; this is especially desirable in cases where the

two curves do not intersect, but are tangent. Fig. 16 is for a lattice

network equivalent to two sections of the ladder type illustrated by

Fig. 7, and so cannot include a stop ( — ) band. Accordingly, the

ratio does not go above unity, although it reaches unity at the two

frequencies 300 and 400, corresponding to the infinite attenuation

where stop ( — ) and stop (+) bands meet in Fig. 7. It is also
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unity at the extreme frequencies zero and infinity. The four pass

bands have, of course, the same locations as in Fig. 7.

Multiplying the ratio by a constant greater than unity introduces

stop ( — ) bands along with the stop (+ ) bands; multiplying it by

a constant less than unity removes all infinite attenuations; these

changes within the stop bands are made without altering the loca-

tions of the four pass bands.

Wave-Filter Having Assigned Pass Bands

In connection with practical applications we especially desire to

know what latitude is permitted in the preassignment of properties

for a wave-filter. If we consider first the ideal lattice wave-filter,

its limitations are those inherent in the form which its two inde-

pendent resistanceless one-point impedances5 Zi and Z2 may assume.

The mathematical form of this impedance is shown by formula (7)

of the appendix, which may be expressed in words as follows:

Within a constant factor the most general one-point reactance obtain-

able by means of a finite, pure reactance network is an odd rational

function of the frequency which is completely determined by assigning

the resonant and anti-resonant frequencies, subject to the condition that

they alternate and include both zero and infinity.

The corresponding general expressions for the quotient and product

of the impedances Z\ and Z2 are shown by formulas (8) and (9).

Definite, realizable values for all of the 2rc-f-2 parameters and

2rc-f-l optional signs occurring in these formulas may be deter-

mined in the following manner:

(a) Assign the location of all n pass bands, which must be treated

as distinct bands even though two or more are confluent; this

fixes the values of the 2n roots pi . . . p->n which correspond

to the successive frequencies at the two ends of the bands.

(b) Assign to the lower or upper end of each pass band propagation

without phase change from section to section; this fixes the

corresponding optional sign in formula (8) as + or — , respec-

tively.

(c) Assign a value to the propagation constant at any one non-

critical frequency (that is, assign the attenuation constant in a

5 A one-point impedance of a network is the ratio of an impressed electromotive

force at a point to the resulting current at the same point—in contradistinction to

two-point impedances, where the ratio applies to an electromotive force and the

resulting current at two different points.
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stop band or the phase constant in a pass band) ; this fixes

the value of the constant G and thus completely determines

formula (8) on which the propagation constant depends.

(d) Assign to the lower or upper end of each stop band the iterative

impedance zero; this fixes the corresponding optional sign in

formula (9) as + or — , respectively.

(e) Assign the iterative impedance at any one non-critical fre-

quency (subject to the condition that it must be a positive

resistance in a pass band and a reactance in a stop band)

;

this fixes the constant H and thereby the entire expression (9)

upon which the iterative impedance depends.

The quotient and product of the impedances Z x and Z 2 are now

fully determined; the values of Z x and Z2 are easily deduced and also

the propagation constant and iterative impedance by formulas (11)

and (12); Z\ and Z2 are physically realizable except for the necessary

resistance in all networks.

These important results may be summarized as follows:

A lattice wave-filter having any assigned pass bands is physically

realizable; the location of the pass bands fully determines the propagation

constant and iterative impedance at all frequencies when their values

are assigned at one non-critical frequency, and zero phase constant and

zero iterative impedance are assigned to the lower or upper end gf each

pass band and stop band, respectively.

Lattice Artificial Line Equivalent to the Generalized

Artificial Line of Fig. 1

Since any number of arbitrarily preassigned pass bands may be

realized by means of the lattice network, it is natural to inquire

whether this network does not present a generality which is essen-

tially as comprehensive as that obtainable by means of any network

N in Fig. 1, provided the generalized line is so terminated as to equalize

its iterative impedances in the two directions. This proves to be

the case.

If network N has identical iterative impedances in both directions,

the lattice network equivalent to two sections of .A/ is shown by Fig.

17; each lattice impedance is secured by using an N network; the N's

placed in the two series branches of the lattice have their far terminals

short-circuited so that they each give the impedance denoted by

Z ; the N's in the two diagonal branches have their far ends open

and they each give the impedance denoted by Zoo.
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The lattice network of Fig. 18 has in each branch a one-point im-

pedance obtained by means of a duplicate of the given network N
and an ideal transformer. The two lattice branch impedances are

Z?
+Zr ±2Zgr where the three impedances Zq , Z r , Zqr are the

effective self and mutual impedances of the network N regarded as a

transformer. This lattice network has identically the same propaga-

O
O N N o

o

Fig. 17—Lattice Unit Equivalent to Two Sections of Fig. 1 Assumed to be

Symmetrical

tion constant as the single network N shown on the left. Since the

lattice cannot have different iterative impedances in the two direc-

tions, it actually compromises by assuming the sum of the two itera-

tive impedances presented by A7
. A physical theory of the equival-

s©s

Fig. 18—Lattice Network Having the Same Propagation Constant as N and an

Iterative Impedance Equal to the Sum of the Two Iterative Impedances of N

ences shown in Figs. 17 and 18 has not been worked up; the analytical

proofs were made by applying the formulas given in the appendix

under lattice networks.

Without going to more complex networks it is, of course, not pos-

sible to get a symmetrical iterative impedance, but that is not necessary

for our present purposes where we are concerned primarily with the
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propagation constant. It has now been shown with complete gener-

ality that:

The lattice artificial line, with physically realizable branch impedances,

is identically equivalent in propagation constant and mean iterative

impedance to the chain of identical physically realizable networks con-

nected together in sequence through two pairs of terminals.

To complete this simplification of the generalized artificial line it is

necessary to know the simplest possible form of the one-point im-

pedances employed in the branches of the lattice network. The
discussion of the most general one-point impedance obtainable by

means of any network of resistances, self and mutual inductances,

leakages and capacities will find its natural place, together with

allied theorems, in a paper on the subject of impedances. For the

present purpose it is sufficient to state:

The most general branch impedance of the lattice network may be

constructed by combining, in parallel, resonant circuits having im-

pedances of the form R-\-iLp-\-{G-\-iCp)~
l

; or they may equally

well be constructed by combining, in series, anti-resonant circuits having

impedances of the form I G-\-iCp-\-(R-\-iLp)~
l \-~

Summary of Physical Theory

The wave-filter under discussion approximates to a resistanceless

artificial line, and such an ideal artificial line is capable of two, and

only two, fundamentally distinct states of motion. In one state the

disturbance is attenuated along the line, and there is no flow of energy

other than a back and forth surging of energy, the intensity of which

rapidly dies out along the line. In the other state there is a free

flow of energy, without loss, from section to section along the line,

with no surge of energy between symmetrical sections. Each state

holds for one or more continuous bands of frequencies; these bands

have been distinguished as stop bands and pass bands.

A high degree of discrimination, between different frequencies,

may be obtained, even if each section, taken alone, gives only a

moderate difference in attenuation, by the use of a sufficient number
of sections in the wave-filter, since the attenuation factors vary in

geometrical progression with the number of sections.

Any number of arbitrarily located pass bands may be realized by

means of the lattice artificial line; furthermore, the propagation

constant at one frequency, and the iterative impedance at one fre-

quency may both be assigned, while the location of zero phase con-
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stant and zero iterative impedance at the lower or upper end of each

pass band and stop band, respectively, is also optional. This com-

pletely determines the lattice artificial line. No additional condition,

other than iterative impedance asymmetry, can be realized by re-

placing the lattice network by any four terminal network.

APPENDIX

Formulas for the Artificial Line

Formulas for the propagation constant and iterative impedance of

the generalized artificial line, expressed in a number of equivalent

forms, have already been given in my paper on Cisoidal Oscillations, 6

but it seems worth while to deduce the formulas anew here from the

free oscillations of the detached unit circuit of Fig. 6, so as to complete

the physical theory by deducing the comprehensive mathematical

formulas by the same method of procedure.

Ladder Network Formulas

Notation:

Z\, Z2 = series impedance and shunt impedance of the section of

Fig. 4, which is equivalent to the general network N of

Fig. 1.

r = A + iB = propagation constant per section.

K\, K2 = iterative impedances at mid-series and mid-shunt.

y = <x -\- i(3 = VZ1/Z2 = propagation constant for uniform distri-

bution of Z\ and 1/Z2 ,
per unit length.

k = VZ1Z0 = iterative impedance of this same uniform line.

In Fig. 6, the current is indicated as / and the potentials at the

ends of the section as V,Ve~ l\ In order that the free oscillation may
be possible the total impedance of the circuit (Z t + Z' + Z") must

vanish; this determines the iterative impedance K->. In addition to

this condition it is sufficient to make use of two other simple relations:

the proportionality of the potential drops in the direction of the current

across Z' and Z" to Z' and Z", since they carry the same current

(this determines the propagation constant Y) ; and the equality of

6 "Cisodial Oscillations," Trans. A. I. E. E., vol. 30, pp. 873-90'P, 1911. In the

lowest row of squares of Table I, the iterative impedances and propagation constant

of any network are given in five different ways, involving one-point and two-point

impedances, equivalent star impedances, equivalent delta impedances, equivalent

transformer impedances, or the determinant of the network. The only typo-

graphical errors in Table I appear to be the four which occur in the first, third and
fifth squares of this row: in the values for K„ replace {SQ — SQr ) by (Sq — Sr ) and
place a parenthesis before Uq

— Ur); in the first value of Kr replace Sqr hyS^; in

the last value for Tqr add a minus sign so that it reads cosh -1
.
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Ki, the mid-series iterative impedance of the artificial line, to the

total impedance on the right of the mid-point of the series impedance

Zi. These three relations, which can be written down at once, are:

X7'. TC -

Z\ -\- Z + Z = Z\ —
,
„

2
— j, i

= 0,

Ve-r _ _Z^ = 2Z2 - K2

V Z' ~ 2Z2 + Kz

Al ~ 2
Zl+Z - 2

Zl + 2Z2 +X2
'

from which the formulas for T, Ku and K2 , in terms of Z lt Z2 , are

found to be:

T = 2sinh- 1 i-J^i = 2 sinh- 1

\y, (1)
^ \ Z2 z

f; I

- VZS (l +fJ ** - * (l +H **- mid
j^ (2)

and the formulas for Z\ and Z2 in terms of T and K\ or i£2 are likewise

found to be:

Zi = 2Ki tanh | r = K2 sinh r, (3)

Z2 = iTi/sinh r = i X2 coth jr T. (4)

Formulas (3) and (4) are in the nature of design formulas in that

they determine the impedance Z\ and Z2 , at assigned frequencies,

which will ensure the assigned values of V and K at these frequencies.

In general, however, it would not be evident how best to secure these

required values of Zi and Z2 ; complicated or even impossible net-

works might be called for, even to approximate values of Z t and Z2

assigned in an arbitrary manner. Fortunately, practical require-

ments are ordinarily satisfied by meeting maximum and minimum
values for the attenuation constant throughout assigned frequency

bands. Formulas (8) and (9) may be employed for this purpose as

explained below.

It is convenient to have formulas (1) and (2) expressed in a variety

of ways, since no one form is well suited for calculation throughout

the entire range of the variables. Accordingly, the following analyti-

cally equivalent expressions are here collected together for reference:
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r = i 2 sin-' £. = i cos- 1

( 1 + ¥) , (5 )

7

= 2 sinh"1! = 2 tanh" 1
2

„ = cosh-' (l + \)
1 + 7

7\
iT l

= 21°g[i + \|l+j]. (5a)

= Mr + 2 cosh-' |: = Mr + cosh- 1

(
- L - yJ

= tF + 21og[i+
N
'-l- £], (5b)

."<* -sinh-(l+|)/, (5c)

1
3 ,

_3 , o_
7

~ T
24

7 +
640 7 7168

7 + .... if I 7 I
< 2, Oxl)

=- 2 cosh-' g + * 2 sin' 1 ^, (6e)

here 7^4-^2g=J(|)V(nh|)
2

+
Nl(l)

2

+(l-§);

= cosh- 1
7* + / cos" 1

£. (50

where l+^72 = * + '>, 2// - \/(.v+l) 2+y2+ V(.v- l)
2+y2

.

iif-'^+i'
1

)
i -*(°-h

f) = *(-—)
/l 1 \ =fcl

• , I
series ....

-*(5 TOoth 5 r) atmKlj
shunt

(0)

The formulas leave indeterminate the signs of 7, k, Y, and K, and

also a term ±/2tt« in 7 and T. The signs arc to be so chosen that

the real parts are positive, or become positive when positive re-

sistance is added to the system. The indeterminate ± i2rn can

be made determinate only after knowing something of the internal

structure of the unit network of which the artificial line is composed;

the conditions to be met are—absence of phase differences when all

branches of the unit network N of Fig. 1 are assumed to be pure
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resistances and continuity of phase as reactances are gradually intro-

duced to give the actual network.

Formula (5) is adapted for use in the pass bands, since the ex-

pressions arc real when y- is real, negative and not less than — 4;

similarly, formulas (5a) and (5b) are adapted for use in the stop (±)
bands, that is, when y2

is positive and less than — -4 respectively.

From the theory of impedances we know that any resistanceless

one-point impedance is expressible in the form

Z = iD t &'& • • • &»-i-f) m
{Pl-P1

) (Pl-P 2
) (Pln-I-P

2
)

where the factor D and the roots pi, p2 , . . p±„ are arbitrary positive,

reals subject only to the condition that each root is at least as large

a,s the preceding one. This enables us to write down the forms which

the quotient and product of two resistanceless one-point impedances

may assume, which are as follows:

Z" \pl-pl) \p~-p2j \ p\n -p*

rz: -</-) "(frS
"

• • (£=*=£) ^'-^ " (9)
\p

v
-p>-/ ^ps-p1' Xp2n-1—P'

where G, H and the roots pi, pi, . . . pin are arbitrary positive reals,

subject only to the condition that each root is at least as large as the

preceding one, and the 2w+ l and optional =*= signs are mutually

independent. Conversely, if the relations (8) and (9) are prescribed,

then the required individual impedances Z' and Z" are each of the

form (7) and thus physically realizable.

If in formulas 1, 2, 5 and 6 we substitute for Zi/Z2 = y2 and

Zi Z 2 = k2 the right-hand side of formulas (8) and (9), respectively,

we obtain formulas for the propagation constant and iterative im-

pedance of an artificial resistanceless line in terms of frequencies at

which the propagation constant becomes zero or infinite. Ordi-

narily, however, we are more interested in having expressions in

terms of the frequencies which terminate the pass bands. To secure

these the substitutions should be 4[8]/(4 - [8] ) and [9] (1 - [Sj/i)* 1
,

where [8] and [9] stand for the entire right-hand sides of formulas

(8) and (9). This substitution amounts to obtaining the lattice net-

work giving the required pass bands, and then transforming to the
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ladder network having the same propagation constant and the same

iterative impedance at mid-series or mid-shunt.

Lattice Network Formulas Fig. 14

The impedances of a single section between terminals 1 and 2, with

the far end of the section 3 and 4 either short-circuited or open, are

readily seen to be

Zo= 2Z^
>Zoe=

l/l
Zi + 2Z V (10)

^Z 1 + 2Z2

2V2 ^

SinceVZoZoo and V Zo/Zao are the iterative impedance and the

hyperbolic tangent of the propagation constant for any symmetrical

artificial line, we have the following analytically equivalent formulas

for the lattice network where 7 = V Z1/Z0, and k = \ Z xZi as for

the ladder type.

Lattice Formulas

r = 2 tanh- 1 i ^||i = 2 tanh-^7, (11)

K = y/ZTZt = k. (12)

Zj = 2K tanh
J

I\ (13)

Z»_ = \k zoXh\v

.

(14)

1 + 7 72

r = /2 tan"1 £ = i cos" 1 —

,

(15)

l- T r

1

1 _L X
2

7 1 + 7 r
= 2 tanh-1? = 2 sinh" 1 —JL= = cosh"1

=-

1+^7
= log

1

-, (15a;

1 -s7
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1

,-,T= ir + 2 coth"1 ^ = ** + cosh" 1

1+|72

2
'

1

1 + - 7
- tr + log \-, (15b)

1 +772

= t J
- sinh-i ^_ ^ (15c)

l-,r

= Iw 2 tl \±L + / tan- 1 ^
2f (15e)

2

(-sr+d) »-©-®
where 7 = « + / /3.

In these formulas Zi/Za = 7" and Zi Z 2 = k'
1 might be expressed

in terms of the resonant and anti-resonant complex frequencies of

Zi and Z2 , the frequencies being made complex quantities so as to

include the damping. Where there is no damping, that is, where all

network impedances are devoid of resistance, the simplified forms

of these expressions are given by formulas (8) and (9). The use of

these formulas for designing wave filters having assigned pass bands

is explained at page 23.


